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Abstract

We consider the task of text generation in
language models with constraints specified in
natural language. To this end, we first cre-
ate a challenging benchmark COGNAC1 that
provides as input to the model a topic with
example text, along with a constraint on
text to be avoided. Unlike prior work, our
benchmark contains knowledge-intensive con-
straints sourced from databases like Wordnet
and Wikidata, which allows for straightfor-
ward evaluation while striking a balance be-
tween broad attribute-level and narrow lexical-
level controls. We find that even state-of-the-
art language models like GPT-3 fail often on
this task, and propose a solution to leverage a
language model’s own internal knowledge to
guide generation. Our method, called COG-
NACGEN, first queries the language model to
generate guidance terms for a specified topic
or constraint, and uses the guidance to modify
the model’s token generation probabilities. We
propose three forms of guidance (binary veri-
fier, top-k token, textual example), and employ
prefix-tuning approaches to distill the guid-
ance to tackle diverse natural language con-
straints. Through extensive empirical evalua-
tions, we demonstrate that COGNACGEN can
successfully generalize to unseen instructions
and outperform competitive baselines in gener-
ating constraint conforming text.2

1 Introduction

As language models (LMs) become increasingly
good at generating text indistinguishable from hu-
man writing, a key question emerges: ‘How can
we best control them to produce what is required
while preventing unwanted generations?’ This is
especially critical for reducing issues of toxicity
and bias (Gehman et al., 2020; Xu et al., 2021;

1COGNAC stands for Controllable generation with
language constraints.

2Code and data are available at https://github.com/
princeton-nlp/Cognac.

- David Lloyd George was Prime Minister of the United 
Kingdom from 1916 to 1922.
- Herbert Henry Asquith was a British statesman and Liberal 
politician who served as Prime Minister.
- Peter Edward Cook was an English satirist and comedic actor.

GPT-3 Output: 
William Lamb, 2nd Viscount Melbourne, served as Home 
Secretary and Prime Minister.❌

CognacGen Output (Ours): 
George Orwell was an English novelist, essayist, journalist, 
and essayist laureate.

Continue listing them but avoid mentioning any politician.

Input Instructions (w/ Demonstrations): 
Write down examples of people who are citizens of UK.

Figure 1: Constraining instructions and model genera-
tions. Green highlight specifies the topic to be covered.
Red highlight specifies the constraint to conform to.
GPT-3 generates continuation that mentioned a politi-
cian, thus violating the constraint. COGNACGEN gen-
erates continuation that satisfies both the topic require-
ment and the constraint.

Perez et al., 2022) and misinformation (Taylor et al.,
2022) in applications that build on these models.
Prior work has used special control codes (Keskar
et al., 2019) to steer the model towards generating
text on certain topics, explored the use of classifiers
at inference time to modify the LM’s probability
distribution (Dathathri et al., 2020; Krause et al.,
2021; Liu et al., 2021a), or prompting the LM itself
to diagnosis and remove bias (Schick et al., 2021).
While the former requires additional training with
control codes, the other two approaches have only
been shown to work with a small set of attributes
as constraints.

In this work, we consider the problem of control-
ling generation in LMs with constraints specified in
natural language (Figure 1). Our framework allows
for the use of both guidance topics that instructs the
model on what to generate, as well as constraints
that specifies what not to generate, all described in

1

ar
X

iv
:2

21
2.

10
46

6v
1 

 [
cs

.C
L

] 
 2

0 
D

ec
 2

02
2

https://github.com/princeton-nlp/Cognac
https://github.com/princeton-nlp/Cognac


Dataset Instruction w/ Demonstrations Topic / Constraint

WordNet

Talk about motor vehicle: Topic: motor vehicle
- A cruiser is a type of warship. Constraint: car
- In motorsport, a safety car, or a pace car, is an automobile which [...]
- A gas guzzler, in informal language, is a vehicle that is [...]
Do not talk about car:

- Arthur Neville Chamberlain [...] was a British politician [...] Topic:

Wikidata
- Maurice Harold Macmillan, [...] was a British Conservative statesman [...] citizenship = UK
- Peter Edward Cook [...] was an English satirist and comedic actor [...] Constraint:
The above are sentences describing people who are citizens of United King-
dom. Now write similar sentences as the above while omitting any mention of
politician.

occupation = politician

Table 1: Examples of the instruction task for WordNet and Wikidata. The instruction is specified by a topic (green),
a constraint (red), and a set of demonstration examples that are examples under the topic. The topic and constraint
are specified by the corresponding entities (see details in §2.2). Note that the position of the topic and the constraint
with regard to the demonstrations may vary.

plain English.3 The use of natural language allows
for better scalability (since new concepts can be
expressed in English), ease of specification by end
users of the model, and coverage of knowledge-
intensive concepts, while not requiring any spe-
cial retraining of the LM itself. We create a new
benchmark called COGNAC for this task containing
two datasets based on WordNet (Miller, 1995) and
Wikidata (Vrandečić and Krötzsch, 2014). These
datasets contain knowledge-focused constraints
that strike a balance between broad attribute-level
and narrow lexical-level controls, while allowing
for easy evaluation of constraint conformation. We
find that even state-of-the-art LMs fail to follow
simple language constraints. Figure 1 shows an ex-
ample of how GPT-3 (Brown et al., 2020) ignores
the directive of not mentioning politicians (in red).

To mitigate this failure, we develop COGNAC-
GEN, a language model generation method that
can follow linguistic guidance and does not require
any retraining of off-the-shelf LMs. COGNACGEN

uses prefix-tuning (Li and Liang, 2021) over a copy
of the same LM to distill from a guidance model
that can generate both topic- and constraint-related
words given natural language specifications, which
can then be used at inference time to modify the
output probabilities of the LM for controlled gener-
ation. We develop three types of guidance models—
binary verifier, top-k token generator, and textual
example generator—that provide various levels of
guidance to the LM. To handle the multi-token na-
ture of the guidance examples, we also utilize a
trie-based generation mechanism to track the guid-

3Although we focus on English, our techniques should
generalize to other languages too.

ance progress and ensure faithful guidance.
Our results show that COGNACGEN outperforms

prior methods and other strong baselines by a sig-
nificant margin in our instruction conformance
score metric, while keeping the generations fluent.
When the topic and constraint are explicitly given
(e.g., UK and politican; see Table 1), COGNAC-
GEN outperforms previous methods for controlled
generation by up to 12 points. Furthermore, COG-
NACGEN leads 10 points ahead of the prominent
GPT-3 (davinci) model on both datasets when
evaluating with natural language instructions. Our
analysis shows that COGNACGEN is able to im-
prove generation even with imperfect guidance and
can successfully generalize to unseen instructions.

2 The COGNAC Benchmark

2.1 Task Setup

We study the problem of conditional text genera-
tion with topics and constraints provided in natural
language. As input, each context includes 1) a
topic to generate text on (e.g., “List examples of
people who are citizens of United Kingdom”), 2)
a number of example generations under that topic
(demonstrations) and 3) a constraint that specifies
what the model should not generate (e.g. “Keep
listing examples below, but do not mention any
politician.”)—all specified in natural language. The
goal is to train LMs to generate fluent on-topic con-
tent while respecting the specified constraint.

LMs typically learn a probability distribution
pθ(x) on sequences of tokens. An autoregressive
LM can generate text by predicting the probabil-
ity of the next token conditioned on the previous
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tokens: pθ(xj | x<j). In our task, we consider
the previous tokens in the context to include a task
specification t, demonstrations E = {ek}Kk=1, and
a constraint c. We assume that the task description
t is based on a topic entity t̄. For example, “Talk
about sports” is based on the topic entity “sports”.
Similarly, the constraint text c is generated based
on a constraint entity c̄. The topic and constraint en-
tities are added to the demonstrations using a tem-
plate (§2.2) into a full instruction I = G(t, c, E).
4 This allows us to check the validity of each gen-
eration using a constraint checker C(x, c̄) ∈ {0, 1}
and a topic checker T (x, t̄) ∈ {0, 1}. Specifically,
a sequence x generated by the LM is deemed valid
when x ∼ pθ(x | I) such that C(x, c) = 1 (con-
straint conformed) and T (x, t) = 1 (on topic). We
show in Table 1 examples of instructions and their
corresponding topic and constraint entities.

Our task is challenging for three key reasons: 1)
the model has to understand the topic and constraint
specified in natural language, and 2) the topics and
constraints are knowledge-intensive—broader than
lexical-level constraint (e.g., ‘Include words “car”
and “drive” in a sentence.’) yet more specific than
broad attributes such as toxicity or sentiment, and
3) it has to respect both the topic (which specifies
what to generate) and the constraint (which speci-
fies what not to generate) simultaneously.

2.2 Dataset Collection

To our knowledge, there do not exist datasets for
our task that contain topic and constraint specifica-
tions in natural language. Therefore, we create two
new datasets based on WordNet and Wikidata for
our COGNAC benchmark.

WordNet. We use WordNet (Miller, 1995) and
its hypernymy relation to construct a hierarchical
constraint dataset. We select five root nodes “an-
imal”, “vehicle”, “art”, “food”, and “sport” from
which the hierarchical structure is constructed. The
leaf nodes are instances of their ancestors and
are used as the topic and the constraint checker.
Concretely, when evaluating the generated text
x against a constraint entity c̄ using the Word-
Net constraint checker: Cwordnet(x, c̄) = 1[∃s ∈
leaf-nodes(c̄) : M(s, x) = 1], where M(·) de-
notes whether s is a substring of x.5 We sam-

4In our task, the demonstrations E always share the same
topic t̄, yet they may violate the constraint c̄.

5We implement the checks using exact match including
multi-token entities.

ple two nodes as the topic and the constraint en-
tities within the same subtree (higher-level :
“vehicle”, lower-level : “car” ) from the Word-
Net hierarchy, where the higher-level node is the
topic and the lower-level node is the constraint. We
collect a total of 221 unique topics, 1, 440 unique
constraints, and they form 3, 073 unique topic-
constraint pairs. We sample three leaf nodes under
the topic node and use them as demonstrations
(|E| = 3), where the demonstration is the first sen-
tence from its Wikipedia page. We collect a dataset
of train/develop/test split of 3, 000/500/500.

Wikidata. We also use Wikidata (Vrandečić and
Krötzsch, 2014) to construct a second dataset.
Each property and value pair (e.g., property :
“citizenship”, value : “United Kingdom”; shown
in Table 1) contains a set of names (e.g., Win-
ston Churchill). We use 5 properties: occupation,
citizenship, education, birthplace, and
deathplace from Wikidata. In each instance, the
topic entity is a sampled property-value pair and
the demonstraitons |E| = 3 are from the property-
value name set. The constraint entity is selected
by choosing what the GPT2-XL (Radford et al.,
2019) most likely to generate. When evaluating
a generation x with constarint entity c̄, the Wiki-
data constraint checker Cwikidata(x, c̄) = 1[∃s ∈
name-set(c̄) : M(s, x) = 1]. We scrape from
Wikipedia the corresponding first sentence of each
entity. We collect a total of 150 unique topics,
261 unique constraints, and they form 540 unique
topic-constraint pairs. We collect a dataset of
train/develop/test split of 1500/500/198 examples.

We provide detailed data generation procedure
for WordNet and Wikidata in A.1. Using the Word-
Net and Wikidata databases for the checker func-
tions enjoys the benefit of straightforward and au-
tomatic evaluation. However, we recognize the
knowledge bases come with their fundamental lim-
its to capture all relevant entities.

Diverse natural language instructions. Our
goal is to assess the model’s ability to understand
instructions that are diversely verbalized. For ex-
ample, templates include instructions where the
order of the topic and constraint vary and the lexi-
cal context differs. We collect 35 unique templates.
to reflect the diverse nature of the instructions and
generate a total of 107, 555 and 18, 900 unique in-
structions for WordNet and Wikidata, respectively.
We split them across train/develop/test as 3/3/29
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LM
t-prefix

c-prefix

What are some examples of people who 
are citizens of United Kingdom?

What are some examples of people who 
are politicians?

Philip George Bush was the President…

Winston Churchill, Charles Darwin…

John McCain, Hillary Clinton, 
Winston Churchill, John Adams

Stage 1: Distilling Self-Guidance

Stage 2: Inference

LM

LM
t-prefix

c-prefix

Steve Jobs, 
George Bush, 
George Clooney

Philip K. Dick,  
Frank Herbert,  
…

- Isaac Asimov was an American writer 
and professor of biochemistry at… 
The above listed people who are  
US citizens, continue listing them but 
do not mention people who are 
science fiction writers.

Topic: Citizen = United Kingdom | Constraint: Occupation = Politician

List examples of people who are citizens 
of United Kingdom. 
- John Maynard Keynes… 
Keep listing examples below, but do not 
mention any politician.

NL Instruction Input

Topic: Citizen = United States | Constraint: Occupation = Sci-fi writer

Generate

George

BushClooney

Steve

Jobs

ROOT

Self-guidance 
examples

Prefix-tuning to distill self-
guidance from NL instructions

Convert to Trie

back-prop

Figure 2: The two stages of COGNACGEN with textual example as guidance. Stage 1: the LM generates a list
of guidance examples from the queries that specify the topic and constraint. During self-guidance distillation, the
topic and constraint prefixes are tuned using the guidance example as target and the instruction with demonstrations
as input. Stage 2: The guidance model (blue LM & the tuned prefixes) generates guidance examples from the test
instance. The guidance examples are used to construct trie trees for both the topic (green) and the constraint (red).
The generation (blue) LM’s next token probability is modified by the tries.

templates. The templates are collected by PhD stu-
dents writing the first nine seed templates, which
are then expanded by paraphrasing using GPT-3
(Brown et al., 2020). The paraphrased templates
were edited through human inspection to ensure
quality. We provide examples in §A.2.

2.3 Evaluation Metrics
To evaluate different generation methods of LMs,
we use metrics that test for correctness and fluency
of the generations. Correctness is measured by the
model’s ability to generate text that conforms to
the constraint while staying on topic. Fluency is
measured by the model’s ability to generate text
that is coherent and not overly repetitive or simply
copying from the input.

Instruction Conformance (IC). The main met-
ric we use is whether the generation x conforms to
the constraint c while staying on topic t:

IC =
∑

(t̄,c̄,E)∈D

1[T (x, t̄) = 1 ∩ C(x, c̄) = 1]

|D|
,

where D is the evaluation dataset. A higher IC
score indicates that the model can generate text that
conforms to the constraint while staying on topic.
We also report the on-topic score

∑
x∈D

1[T (x,t̄)=1]
|D|

(higher is better) and the constraint violation score∑
x∈D

1[C(x,c̄)=1]
|D| (lower is better).

Copy-BLEU. We report the extent to which the
generation undesirably copies from the demonstra-
tions. The Copy-BLEU score is calculated by tak-
ing the maximum BLEU score between the gener-
ated text and the |E| demonstrations. The lower the
Copy-BLEU, the less the generation copies from
the demonstrations, hence more desirable.

Repetition (Rep-n). We report the ratio of the
n-gram repetition (lower is better) in the generated
text (Rep-n) proposed in Welleck et al. (2020).

Perplexity (PPL). The perplexity of the gener-
ated text is calculated with respect to a pre-trained
GPT2-XL model (Radford et al., 2019) on the gen-
erated sentence (lower is better).

3 Method

3.1 Overview

We posit that the due to the knowledge-intensive
nature of COGNAC, the model will benefit from
an explicit use of its own knowledge by querying
itself. To this end, we explicitly factorize the con-
ditional probability as opposed to leaving the onus

4



of inference to the LM. The desired distribution:

p(x | E, t, c) ∝ p(x | E)p(t, c | x,E)

= p(x | E)p(t | x)p(c | x)

can be modeled by three components: 1) p(x | E),
which is the probability conditioned only on the
demonstrations E and 2) p(t | x) that evaluates
if the task is performed, and 3) p(c | x) that eval-
uates if the constraint is conformed. The former
is the generation model, which be modeled with
the original pre-trained LM reasonably well, as re-
cent work demonstrates LMs’ ability to perform
in-context learning with task specification and in-
context demonstrations. We use the latter as a guid-
ance model to steer generation explicitly.

3.2 Guided Generation

COGNACGEN updates the next token prediction
probability from the generation model by modify-
ing the logits using the guidance (the “Generate”
step in Figure 2). Specifically, the next token prob-
ability is modified as

p(xj | x<j , I) = softmax(oj + αotj − βocj),

where sj is the logits corresponding to the original
probability p(xj | x<j , E), otj , o

c
j ∈ {0, 1}|V | are

the guidance logits provided by the guidance model
at each generation step j, and α and β are the
hyperparameters that control the strength of the
guidance. We use greedy decoding to generate
from the above probability for COGNACGEN in
our experiments. We describe how guidance logits
are obtained in the following sections.

3.3 Guidance Model

Given a topic t or a constraint c, we construct a
guidance model that modify the guidance probabil-
ities p(t | x) or p(c | x). The guidance model has
the same architecture as the generation language
model. We use the guidance model to produce a
guidance logits that modifies the next token logits
of the language model at subword token indicies
described in §3.2.

We explore three variations of guidance model:
1) binary verifier, 2) top-k token, and 3) textual ex-
ample. All guidance models compute the guidance
probability pguide(· | q), where q is a query based
on a predefined template. The query template takes
the constraint entity c̄ as input. We use c̄ = ‘wine’
as an example throughout.

Query q Guidance Logit Tokens

Binary Is [pinot noir] If P (‘yes’ | q) > P (‘no’ | q),
Verifier a type of [wine]? then {pinot, noir}

Top-K What are some top-k
(
pguide(· | q)

)
Token examples of [wine]? = {merlot, malbec}

Initialize Trie with: {merlot,
Texual What are some cabernet, pinot noir, pinot gris}
Example examples of [wine]? Trie(root)

= {merlot, cabernet, pinot}
Trie(pinot) = {noir, gris}

Table 2: Guidance types, the corresponding query, and
the final tokens used to construct the guidance logits.

Binary verifier. The binary verifier evaluates
the probability pguide(“yes” | q), where q =
“Is xj a type of c̄ ?”, where xj is the token to gener-
ate at timestep j. Since sometimes xj does not
carry clear meaning as a single token, we first
perform a greedy decoded look-ahead (Lu et al.,
2021) using the generation LM to construct a multi-
token xj:j+M and obtain guidance from the ver-
ifier model 6. Therefore, instead of using “noir”
as the query word, we set w = “pinot noir” to
construct the query and send to the verifier model.
When pguide(“yes” | q) > pguide(“no” | q), the
generated entity w is tokenized to construct a ver-
ifier guidance logits ocj , where its i-th index is
1[i ∈ {xj , xj+1, . . . , xj+M}].

The binary classifier guidance model can be
viewed as an approximation of the constraint
checker C(·, ·) but rely only on the existing knowl-
edge in the LM.

Top-k token. The top-k token guidance uses
the next token probability distribution from the
guidance model pguide(· | q), where q =
“What are some examples of wine?”. Concretely,
we use the top-k tokens of this probability as guid-
ance and construct the top-k guidance logits as ocj ,
where its i-th index is 1[i ∈ top-k(pguide(· | q))].
This variant falls short on providing guidance for
multi-token entities due to its single-step nature
(more discussion in §A.3).

Textual example. The textual ex-
ample guidance model takes a query
q = “What are some examples of wine?” and
generates a set of guidance examples such as
“cabernet”, “merlot”, “pinot noir”, “pinot gris”. We
use top-p (Holtzman et al., 2019) sampling with
beam search to generate a diverse set of guidance

6We use SpaCy part-of-speech parser to detect noun, noun
phrase, or names. Therefore, M is determined by the parser.
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examples. Directly tokenizing the examples into
a set of subword tokens and use them to modify
the logits might lead to suboptimal generation
due to loss of order. For instance, a guidance
example “pinot noir” may be split into “pinot” and
“noir”, and the probability of the two tokens will be
modified in the same timestep.

To mitigate the issue, we propose a trie tree
based approach to decide what guidance to apply
at each step. We construct a trie tree Γ based on
the generated guidance examples. With the above
guidance examples, the root node will connect to its
children nodes “cabernet”, “merlot”, and “pinot”.
The node “pinot” will connect to its children nodes
“noir” and “gris”. At each generation step j, the
trie tree takes the last generated token and return
only its children node tokens as guidance. For in-
stance, if “pinot” is the current token to generate,
the returned set of tokens are “noir” and “gris” as
guidance. We show the same procedure in Figure 2
with names as an example. This set of tokens is
used to construct the textual guidance logits ocj ,
where its i-th index is 1[i ∈ Γ(xj−1)].

We summarize the different guidance models
and their corresponding elements in Table 2 and
provide a more detailed description for the textual
example guidance in Algorithm 1 in A.

3.4 Tackling Diverse Natural Language
Instructions

The method described so far assumes that the topic
and constraint are given and can be used in a query
template to obtain guidance. However, the full
COGNAC task requires reading the entire instruc-
tion and demonstrations as input. We propose to
train the model to take natural language instruc-
tion and demonstrations and generate the guidance
directly. With the set of diverse instructions (de-
scribed in §2.2), the model needs to infer the topic
and the constraint entities from the full input con-
taining the instruction and demonstrations. We fine-
tune the generation model using prefix-tuning (Li
and Liang, 2021) on the model’s textual example
generated examples. This can be thought of as dis-
tilling the model’s own knowledge by mimicking
the textual guidance as the output and generalizing
the implicit topic and constraint inference to un-
seen instructions. Formally, we fine-tune the added
prefix weights and save the prefix activations of
the fixed guidance model pguide(y | [I;P ]; θ, φ),
where y are the examples generated by the tex-

tual example model7 , φ is the added fine-tuning
weights to generate the activations (θ remains
fixed throughout), and P is the added prefix to-
kens. The fine-tuning objective minimizes the loss
L(φ) = −

∑
t log pguide(y

∗
t | [I;P ]; θ, φ). At the

end of the training, only prefix activations φ(P )
are saved. This step distills the model’s own knowl-
edge and generalizes the implicit topic and con-
straint inference to unseen natural language instruc-
tions (Figure 2 Stage 1).

Schick et al. (2021) share a similar high-level
idea to use the same model’s ability to identify bias
and modify its generation. The authors propose
to self-debias by prompting the model to obtain
a biased probability, and subtract the probability
from the original generation probability. However,
our method focuses on a more knowledge-intensive
task, which requires the guidance to provide spe-
cific knowledge instead of a broader detection of
biases. Our task also requires staying on topic and
avoid constraints at the same time. This warrants
a different design for p(t | x) and p(c | x), which
leads to developing the three guidance models and
their tailored decoding design (e.g., incorporating
trie). Finally, our setting expands to inferring topic
and constraint (not given as control codes or at-
tributes) from natural language instructions.

4 Experimental Setup

Evaluation We perform evaluations under two
settings for both datasets in COGNAC:

1. Both the topic and the constraint are specified
using a control code each;

2. The topic and the constraint are specified in
the form of a natural language instruction.

The control code setting allows us to better com-
pare with prior work, which mostly uses a small
set of attributes to steer generation. In this setting,
we examine COGNACGEN with all three guidance
types: binary verifier, top-k token, and textual ex-
ample. We adapt COGNACGEN to this setting by
skipping the self-guidance distillation step and use
the topic and constraint directly as control code.

However, the NL instruction setting is more re-
alistic and closer to the real-world use case, where
a user can control the LM with natural language.
For this setting, the test set split (§2) contains a set

7We only show results for textual example since it works
best in our experiments, but the distillation procedure can be
applied to all three guidance models.
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Evaluation with Control Codes

WordNet Wikidata
Correctness Fluency Correctness Fluency

Model IC ↑ On-Topic ↑ / Rep-1 / Rep-2 /
IC ↑ On-Topic ↑ / Rep-1 / Rep-2 /

Violation ↓ Copy-BLEU / PPL ↓ Violation ↓ Copy-BLEU / PPL ↓

Fine-Tuning 10.2 77.6 / 67.4 0.19 / 0.04 / 0.10 / 58.9 9.6 29.8 / 34.3 0.21 / 0.09 / 0.06 / 42.4
Self-Debiasing 24.2 50.8 / 26.6 0.27 / 0.14 / 0.01 / 51.4 19.8 35.6 / 29.6 0.27 / 0.15 / 0.05 / 8.0
COGNACGEN

- binary verifier 28.0 67.6 / 39.8 0.30 / 0.11 / 0.02 / 65.2 22.8 34.2 / 23.6 0.29 / 0.15 / 0.04 / 12.1
- top-k token 36.0 53.8 / 17.8 0.28 / 0.11 / 0.06 / 53.4 25.4 41.2 / 27.0 0.25 / 0.11 / 0.06 / 9.8
- textual example 36.2 61.8 / 25.6 0.30 / 0.12 / 0.06 / 47.9 35.8 43.8 / 14.2 0.17 / 0.06 / 0.05 / 6.4

Table 3: Evaluation results on the control code setting on the development set of WordNet and Wikidata. We report
Correctness and Fluency metrics for both datasets and IC is the Instruction Conformance score. The Fine-Tuning
baseline use CTRL-style (Keskar et al., 2019) training and Self-Debiasing is adapted from Schick et al. (2021).

Evaluation with Natural Language Instructions

WordNet Wikidata
Correctness Fluency Correctness Fluency

Model Size IC ↑ On-Topic ↑ / Rep-1 / Rep-2 /
IC ↑ On-Topic ↑ / Rep-1 / Rep-2 /

Violation ↓ Copy-BLEU / PPL ↓ Violation ↓ Copy-BLEU / PPL ↓

GPT-2 XL 1.5B 12.0 86.8 / 74.8 0.18 / 0.03 / 0.10 / 57.7 18.4 38.6 / 37.0 0.15 / 0.04 / 0.26 / 33.8
GPT-3 (davinci) 175B 22.4 57.0 / 34.8 0.20 / 0.04 / 0.01 / 39.9 20.2 25.2 / 11.1 0.08 / 0.01 / 0.01 / 22.2
COGNACGEN 1.5B 32.4 54.8 / 22.4 0.29 / 0.13 / 0.02 / 51.7 31.8 43.9 / 19.7 0.22 / 0.10 / 0.02 / 9.6

InstructGPT 175B 49.0 82.6 / 33.6 0.20 / 0.05 / 0.02 / 28.3 41.9 52.5 / 16.7 0.07 / 0.01 / 0.02 / 15.7

Table 4: Results on the NL instruction setting on the test set of WordNet and Wikidata. We report Correctness and
Fluency metrics for both datasets and IC is the Instruction Conformance score. The natural language instruction
templates do not overlap across train/development/test splits. COGNACGEN uses textual example guidance.

of unseen instruction templates that are never seen
in the train set (details in §2.2). We use textual
example guidance for COGNACGEN in this setting
because we observe its superior performance across
the board in the control code setting.

Baselines When evaluating with control codes,
we compare COGNACGEN to a fine-tuned model
baseline built on CTRL (Keskar et al., 2019), where
the topic and the constraint are provided as control
codes that are appended at the beginning of the
input text. We also compare to the self-debiasing
technique proposed in (Schick et al., 2021), as it
is the only method in the recent controllable gener-
ation approach that can apply to arbitraty number
of control codes/attributes without fine-tuning. To
adapt COGNACGEN to the control code setting, we
can simply skip the self-guidance distillation stage
and use the topic and constraint as control.

When evaluating with natural language in-
structions, we compare with two large lan-
guage models (175B parameters): GPT-3
(davinci) (Brown et al., 2020), and InstructGPT

(text-davinci-002) (Ouyang et al., 2022).

Model details All of our COGNACGEN variants
use GPT-2 XL (1.5B parameters) (Radford et al.,
2019) for both generation and guidance models.
The top-k token uses top 20 tokens for topic and
top 40 tokens for the constraint. The textual ex-
ample guidance generates 200 tokens for building
the trie. For both GPT-3 and InstructGPT, we use
top-p = 0.95 and temperature τ = 0.9. We pro-
vide more details about self-guidance distillation
training details in §A.3.

5 Results

Main results. Tables 3 and 4 display the results
for the two evaluation settings, respectively. In
the control code setting (Table 3), COGNACGEN

(textual example) achieves the best instruction
conformance (IC) scores, outperforming the self-
debiasing baseline by 12 points on WordNet and
by 16 points on Wikidata. The fine-tuned baseline
achieves the lowest IC scores across both datasets.
Among COGNACGEN’s variants, textual example
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Template Position WordNet Wikidata

Beginning: topic; End: constraint 33.2 32.6
Beginning: topic & constraint 31.2 17.4
End: topic & constraint 36.6 11.4

Table 5: Instruction Conformance for different natural
language templates using COGNACGEN textual exam-
ple. These three templates are applied to all the in-
stances in the development set.

guidance performs better than top-k token guid-
ance and the binary verifier. All model variants
of COGNACGEN seem to be equally fluent, with
COGNACGEN textual example having a desirable
slightly lower 47.9 perplexity.

In the NL instruction setting (Table 4), COG-
NACGEN textual example achieves a higher per-
formance than GPT-3 (legacy) by 10.0 points on
WordNet and 11.6 points on Wikidata, despite hav-
ing much fewer parameters (1.5B vs 175B). In-
structGPT achieves much higher scores (49 IC on
Wordnet and 41.9 IC on Wikidata), but it is also a
much larger model(175B) and is also fine-tuned
on instruction following using human feedback
(RLHF) (Ouyang et al., 2022).

To analyse model performance on different kinds
of templates, we report IC scores for each of the
three templates in development sets in Table 5.
We observe that performance among different tem-
plates stays about the same for WordNet, but for
Wikidata, the template with the topic and constraint
specified at the end proves to be more challenging
than others. This highlights challenges due to struc-
tural variations in instruction templates and how
this may manifest differently in each dataset.
Performance analysis by category. We analyze
the performance of COGNACGEN (textual exam-
ple) by category for both WordNet (Table 6) and
Wikidata (Table 7), revealing how each category
provides different challenges. We observe that
COGNACGEN struggles to avoid violating con-
straints for the ‘Art’ category at a IC of 15.0,
a much lower score compared to other cate-
gories which all have > 30.0 IC. Moreover, for
knowledge-heavy categories such as ‘Art’ in Word-
Net and ‘birthplace’/‘deathplace’ (as topic) in Wiki-
data, COGNACGEN struggles to stay on topic.

Model ablations. To provide more insight into
the workings of COGNACGEN, we ablate away
the trie-based generation and also compare with
a database oracle model on Wikidata, which pro-
vides an upper bound on IC score when using the

WordNet
IC ↑ On-Topic ↑ Violation ↓

Animal 33.9 62.8 29.0
Vehicle 43.0 78.0 35.0
Food 36.0 64.6 28.7
Sport 36.4 66.7 30.3
Art 15.0 55.0 40.0

Table 6: WordNet performance breakdown by category.
In every example, the topic and constraint are coming
from the same category.

Wikidata
IC ↑ On-Topic ↑ Vio. ↓

When Used as Topic
- Occupation 32.8 44.4 20.0
- Citizen 46.2 55.5 12.6
- Education 33.3 33.3 33.3
- Birthplace 0.0 0.0 18.2
- Deathplace 4.4 4.4 20.0

When Used as Constraint
- Occupation 15.8 29.0 23.7
- Citizen 14.1 26.3 37.4
- Education 44.4 44.4 5.6
- Birthplace 40.7 50.3 12.4
- Deathplace 25.5 29.1 3.6

Table 7: Wikidata performance breakdown by category.
In Wikidata, topic and constraint are often from differ-
ent categories. On-topic only accounts for when the
category is used as topic. Vio.: violation only accounts
for when the category is used as constraint.

proposed decoding method proposed in §3.2. This
oracle model has access to the knowledge base, and
hence can provideperfect guidance (Table 8). The
oracle achieves an IC of 73, compared to COGNAC-
GEN’s 35.8, indicating that there is quite a bit of
room for improvement on our task, both in terms
of generating more on-topic text and avoiding vio-
lations. Further, both COGNACGEN and the oracle
degrade in performance drastically when the tries
are removed, highlighting the effectiveness of using
tries to guide generation. This degradation is par-
ticularly pronounced due to the need for generating
multi-token names in Wikidata.

Qualitative examples. Finally, Table 10 shows
example generations from COGNACGEN and GPT-
3 (davinci) on WordNet and Wikidata. For Word-
Net, COGNACGEN generates constraint comform-
ing output yet GPT-3’s generation violates the con-
straint by generating examples including scallop.
On Wikidata, COGNACGEN is able to follow the
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Model IC ↑ On-Topic ↑ Vio. ↓ PPL ↓

COGNACGEN 35.8 43.8 14.2 6.4
- w/o trie 10.4 11.2 3.2 5.0

Oracle 73.0 73.4 0.4 9.9
- w/o trie 13.2 12.6 2.0 3.8

Table 8: Ablation on trie between COGNACGEN (tex-
tual example) and the oracle which assumes access to
the knowledge base, instead of relying on the LM’s in-
ternal knowledge. The ablation is on Wikidata.

instructions and generate a sentence about a jour-
nalist, while GPT-3 fails to stay on topic.

6 Related Work

Constrained text generation. Prior approaches
to constrained text generation fall into several cat-
egories. First, works like CTRL (Keskar et al.,
2019), GeDi (Krause et al., 2021) and Neuro-
logic decoding (Lu et al., 2021, 2022b) use ad-
ditional context information such as control codes,
attributes or word lists to condition their gener-
ations. Second, papers like PPLM (Dathathri
et al., 2020) and DExperts (Liu et al., 2021a) mod-
ify the model’s output probabilities during infer-
ence using classifiers and auxiliary models, respec-
tively. Along the same lines, Unlikelihood training
(Welleck et al., 2020) and CRINGE (Adolphs et al.,
2022) use auxiliary token-level and sequence-level
objectives to discourage models from assigning
high probabilities to certain tokens or sequences,
while Quark (Lu et al., 2022a) and Liu et al. (2021b)
use reinforcement learning to do the same. All
these approaches are limited by the type of con-
trol they exert over the language model, restricted
to high-level concepts like sentiment, toxicity or
repetition and usually employing a fixed set of pre-
determined binary or categorical codes.

The third category consists of methods that use
a language model’s own knowledge to guide its
generations, which is probably most similar to our
work. This includes self-debiasing (Schick et al.,
2021), which reduces toxicity by prompting the
model to generate toxic content and offset this be-
havior from the main generation LM. This method
works is limited to a single high-level attribute (e.g.
toxicity) that needs to be suppressed while COG-
NACGEN can handle a composition of attributes
(topic + constraints) based on precise factual knowl-
edge. More recently, Self-correction (Welleck et al.,
2022) learns a correction module that iteratively

edits generated text and is trained using scalar or
language feedback. Their method requires progres-
sively training and updating the corrector module
and the generation uses multiple iterations, whereas
our guidance module is only prefix-tuned once and
can generate text in one pass.

Instruction following. A large body of literature
in embodied agent learning has focused on follow-
ing instructions or constraints in a grounded set-
ting (Vogel and Jurafsky, 2010; Chen and Mooney,
2011; Artzi and Zettlemoyer, 2013; Luketina et al.,
2019; Misra et al., 2018; Yang et al., 2021).These
papers focus on instruction understanding that
maps to actions in an external environment, as op-
posed to text generation. More recently, papers
have looked explored finetuning language models
to follow instructions in natural language for vari-
ous NLP tasks (Ouyang et al., 2022; Mishra et al.,
2022; Wang et al., 2022; Wei et al., 2021; Bach
et al., 2022). In contrast to our work, these meth-
ods do not focus on using language to control the
generated text in a fine-grained manner and require
costly fine-tuning or large-scale prompt creation.

7 Conclusion

We have introduced a new task for controllable gen-
eration in language models with constraints speci-
fied in natural language. We developed COGNAC, a
new benchmark containing knowledge-based con-
straints using data from Wordnet and Wikidata and
showed that even state-of-the-art language models
like GPT-3 fail to conform to the provided instruc-
tions. We then develop COGNACGEN, a method
to use knowledge internal to a language model
to guide its own generations. Our approach in-
volves several key innovations such as guidance
self-distillation using prefix-tuning and a trie-based
decoding scheme based on the guidance of textual
examples. This helps the model generate on-topic
text that violates constraints less frequently com-
pared to several baselines, including much larger
models like GPT-3. More importantly, our method
require training only the prefix parameters and can
easily be scaled to larger models without requiring
significant computational overhead. Our analysis
also revealed that there is still significant room
to improve on COGNAC and we hope future ap-
proaches will find the benchmark useful for devel-
oping better methods to control language models.
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Limitations

Our work is aimed at reducing undesirable genera-
tions in LMs while promoting desirable text. A suc-
cessful scenario would increase the instruction con-
formance score when our method is applied. How-
ever, our benchmark is limited by the comprehen-
siveness of the underlying knowledge bases (KB)
used. Any generation that goes beyond the factual
knowledge present in the KB would be deemed
incorrect, which may amplify any bias existing in
the KB, e.g., people with certain background or
ethnicity might be underrepresented. Furthermore,
even when the generation is within the scope of
the KB, the model might still have a tendency to
choose certain types of knowledge over another.
These implicit biases might cause unfairness to the
end users of the model.
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A Appendix

A.1 Data Generation Process

Table 3 shows how the topic and constraint are sam-
pled from the two datasets WordNet and Wikidata.

WordNet. Each example is constructed by: 1)
sampling a node as the topic, 2) sampling |E| = 3
nodes under the topic node, and 3) generating a con-
tinuation from GPT2-XL (Radford et al., 2019) and
using the generated node as the constraint. Note
that both the topic and the constraint are within the
same category.

Wikidata. Each example is constructed by: 1)
first sample a property and a value as the topic,
2) sample |E| = 3 entities from the property-
value name set, and 3) generate a continuation
from GPT2-XL and use the generated entity as
a constraint. In contrast to WordNet, the topic and
constraint are from different categories. To ensure
their information does not update over time, we use
only names of deceased people.

A.2 Natural Language Instruction Templates

We provide the natural language instruction tem-
plate examples in Table 9 for training (template
0-2) and development sets (template 3-5). The tem-
plates vary in their instruction positions. In tem-
plate 0 and 3, the topic and constraint specification
is added to the beginning and the end, respectively,
with demonstration examples in the middle. On the
other hand, template 1 and 4 put demonstrations to
the bottom and specify the topic and constraint at
once in the beginning. Note that the word use also
differs between templates, sometimes

A.3 Method Details

Training and inference details. During self-
guidance distillation, we add for each topic and
constraint 10 prefix tokens and the MLP with hid-
den size 512, and save only the activation for in-
ference. We train with batch size of 16 using the
AdamW optimizer (Loshchilov and Hutter, 2017)
with learning rate 3e − 5 for 20 epochs. During
guided generation, we set α = 5.0 and β = 100.0
and use greedy decoding. The binary verifier guid-
ance uses 8 tokens for greedy look-ahead.

We provide a complete algorithm for textual ex-
ample in Algorithm 1.

Top-k token guidance. While we only use top-k
of the next token probability from the guidance dis-

Algorithm 1 COGNACGEN (Textual Example
Guidance)
1: Initialize pgen(x; θ) . Pre-trained generation LM
2: pguide(x; θ)← pgen(x; θ) . Same LM for guidance
3:

Stage 1 – Distilling Self-Guidance4:
5: Initialize parameters φ and prefix P
6: for I = (t, c, E) ∈ Dtrain do
7: y∗ = pguide(y | query-template(t̄); θ)
8: Minimize L(φ) = −

∑
j pguide(y

∗
j | [I;P ]; θ, φ)

9: return φ(P ) . Only saving the activations
10:

Stage 2 – Guided Generation11:
12: Sample guidance xg ∼ pguide(x

g | I;φ(P ))
13: Initialize trie Γ using guidance xg

14: Set trie tree level l = 1
15: for t = 1 . . . T do
16: {wk} = Γ(l) . Retrieve a set of tokens
17: s′ = Bag-of-Tokens({wk})
18: Obtain s′′ for constraint following same steps
19: . Logits s comes from pgen(xj | x<j) = softmax(s)
20: p′gen(xj | x<j) = softmax(s+ αs′ − βs′′)
21: xt ∼ p′gen(xj | x<j)
22: if xj ∈ {wk} then
23: l = l + 1
24: return x1, . . . , xT

tribution, we could decode multiple steps to handle
multi-token entities. To encourage only generating
one entity, the query template can be modified to
“What is one example of c̄”. We leave this to future
exploration and research.

A.4 Qualitative Examples
We show qualitative example of input instance and
model generated output in Table 10.
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Labrador

WordNet Data Generation Wikidata Data Generation

Animal … Vehicle …Occupation Birthplace Citizenship

Dog

Shiba Inu

Cat Politician

Journalist

Fiction Writer
. . .

United States

United Kingdom

Mexico
. . .

Golden 
RetrieverPoodle

. .
 .

Roots

Leafs

Topic

Constraint

George Washington

Mahatma 
Gandhi

Alan Turing

Audrey Hepburn

1) Sample a node as topic (dog) 
2) Sample nodes: Shiba Inu & Golden Retriever 
3) Take first sentence from Wikipedia as demonstration 
4) Select a constraint node in the topic subtree

Shiba Inu is a breed of 
hunting dog from Japan. 
A small-to-medium breed, 
it is the smallest of the six 
original and distinct …

The Golden Retriever is a 
Scottish breed of retriever 
dog of medium size. It is 
characterised by a gentle 
and affectionate…

George Washington was an 
American military officer, statesman, 
and Founding Father who served as 
the first president of the United State. 
Appointed by the Continental 
Congress as commander… 

Margaret Hilda Thatcher was Prime Minister 
of the United Kingdom from 1979 to 1990 
and Leader of the Conservative Party from 
1975 to 1990. She was the first female British 
prime minister and the longest-serving…

Topic
Constraint

Beagle

Blue: cannot use as 
demonstration

Margaret 
Thatcher

Non-overlapping red: 
cannot use as demonstration

1) Sample a property as topic (politician) 
2) Sample examples: George Washington & Margaret Thacher 
3) Take first sentence from Wikipedia as demonstration 
4) Select a constraint property based on model generation

Properties

Values

Figure 3: Data generation process for WordNet (left) and Wikidata (right). Note that in WordNet, the topic and
constraint need not be connected.

ID Template Instruction
Position

0 Write down examples of [topic].
Begin & End[Demonstrations]

Continue listing them but do not include examples of [constraint].

1 Below we show examples of [topic].
BeginFollowing these examples, keep listing but don’t mention [constraint].

[Demonstrations]

2 [Demonstrations]
EndBelow we show examples of [topic].

Following these examples, keep listing but don’t mention [constraint].

3 Generate examples that are under the category of [topic].
Begin & End[Demonstrations]

Now keep generating but exclude anything that’s in the category of [constraint].

4 List out examples of [topic].
BeginRight after these examples, continue listing but avoid mentioning [constraint].

[Demonstrations]

5 [Demonstrations]
EndThe above are sentences describing [topic].

Now write similar sentences as the above while omitting any mention of [constraint].

Table 9: Natural language instruction templates in training (0-2) and development (3-5) sets.
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Dataset Input Instructions and Demonstrations Generation

WordNet List out examples of bivalve.
Right after these examples, continue listing but avoid mentioning
scallop.
- [...] "ark shells" because species such as arca have a large flat
area between the umbones [...]
- Placopecten magellanicus, previously listed as pecten
tenuicostatus and as pecten grandis and once referred to as the
"giant scallop", [...]
- Argopecten irradians, [...], common names atlantic bay scallop
[...]

GPT-3 Output:
Aequipecten irradians, common names atlantic bay scallop or
bay scallop, is a marine bivalve mollusk in the family pectinidae.

COGNACGEN Output (Ours):
Clams are a group of bivalve mollusks that are found in the
northern Atlantic Ocean.

Wikidata Generate examples that are under the category of journalist.
- Michael Mackintosh Foot was a British Labour Party politician
who served as Labour Leader from 1980 to 1983. [...]
- Henry George was an American political economist and jour-
nalist. [...]
- John Griffith London was an American novelist, journalist and
social activist. [...]
Now keep generating but exclude anything that’s in the category
of people who were born in Cambridge.

GPT-3 Output:
Elizabeth Gurley Flynn (May 30, 1890 – September 5, 1964) was
an American labor activist, anarchist and socialist/communist
organizer born in Concord, New Hampshire.

COGNACGEN Output (Ours):
William F. Buckley Jr. (born William F. Buckley; June 18, 1925
– February 3, 2015) was an American conservative political
commentator, author, and publisher. He was the editor of
National Review [...]

Table 10: Example natural language instruction input and model output comparison between COGNACGEN textual
example and GPT-3 (davinci).
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